
Software Testing and Quality 

Assurance  

Theory and Practice 

System Test Categories & Test Team 

Organization 

Dr. Mohammad Ahmad 



2 

Outline 

• Taxonomy of System Tests 
• Basic Tests 
• Functionality Tests 
• Robustness Tests 
• Interoperability Tests 
• Performance Tests 
• Scalability Tests 
• Stress Tests 
• Load and Stability Tests 
• Regression Tests 
• Documentation Tests 
• Regulatory Tests 

– Software Safety 
– Safety Assurance 



3 

Taxonomy of System Tests 

Figure : Types of system tests 



4 

Taxonomy of System Tests 
• Basic tests provide an evidence that the system can be installed, 

configured and be brought to an operational state 

 

• Functionality tests provide comprehensive testing over the full 
range of the requirements, within the capabilities of the system 

 

• Robustness tests determine how well the system recovers from 
various input errors and other failure situations 

 

• Inter-operability tests determine whether the system can inter-
operate with other third party products 

 

• Performance tests measure the performance characteristics of 
the system, e.g., throughput and response time, under various 
conditions 



5 

Taxonomy of System Tests 
• Scalability tests determine the scaling limits of the system, in 

terms of user scaling, geographic scaling, and resource scaling 

• Stress tests put a system under stress in order to determine the 
limitations of a system and, when it fails, to determine the manner 
in which the failure occurs 

• Load and Stability tests provide evidence that the system 
remains stable for a long period of time under full load 

• Reliability tests measure the ability of the system to keep 
operating for a long time without developing failures 

• Regression tests determine that the system remains stable as it 
cycles through the integration of other subsystems and through 
maintenance tasks 

• Documentation tests ensure that the system’s user guides are 
accurate and usable 



6 

Basic Tests 

• Boot: Boot tests are designed to verify that the system can boot up its software 

image (or, build) from the supported boot options 

 

• Upgrade/Downgrade: Upgrade/downgrade tests are designed to verify that the 

system software can be upgraded or downgraded (rollback) in a graceful manner 

Figure : Types of basic tests 



7 

Basic Tests 

• Light Emitting Diode:  The LED (Light Emitting Diode) tests are 
designed to verify that the system LED status indicators functioning 
as desired 

 

• Diagnostic: Diagnostic tests are designed to verify that the 
hardware components (or, modules) of the system are functioning as 
desired 
– Power-On Self Test 

– Ethernet Loop Back Test 

– Bit Error Test 

 

• Command line Interface:  Command Line Interface (CLI) tests are 
designed to verify that the system can be configured 



8 

Functionality Tests 

Figure : Types of functionality tests 



9 

Functionality Tests 

• Communication Systems Tests 
– These tests are designed to verify the implementation of the communication 

systems as specified in the customer requirements specification 

– Four types of communication systems tests are recommended 
• Basis interconnection tests 

• Capability tests 

• Behavior tests 

• System resolution tests 

• Module Tests 
– Module Tests are designed to verify that all the modules function individually 

as desired within the systems 

– The idea here is to ensure that individual modules function correctly within the 
whole system. 

• For example, an Internet router contains modules such as line cards, system controller, 
power supply, and fan tray. Tests are designed to verify each of the functionalities 



10 

Functionality Tests 

• Logging and Tracing Tests 

– Logging and Tracing Tests are designed to verify the 
configurations and operations of logging and tracing 

– This also includes verification of “flight data recorder: non-
volatile Flash memory” logs when the system crashes 

• Element Management Systems (EMS) Tests 

– EMS tests verifies the main functionalities, which are to 
manage, monitor and upgrade the communication systems 
network elements 

• Management Information Base (MIB) Tests 

– MIB tests are designed to verify 

• Enterprise MIBs specific to the system 



11 

Functionality Tests 

• Graphical User Interface Tests 
– Tests are designed to look-and-feel the interface to the users of an application 

system 

– Tests are designed to verify different components such as icons, menu bars, 
dialog boxes, scroll bars, list boxes, and radio buttons 

– The GUI can be utilized to test the functionality behind the interface, such as 
accurate response to database queries 

– Tests the usefulness of the on-line help, error messages, tutorials, and user 
manuals 

– The usability characteristics of the GUI is tested, which includes the following 
• Accessibility: Can users enter, navigate, and exit with relative ease? 

• Responsiveness: Can users do what they want and when they want in a way that is 
clear? 

• Efficiency: Can users do what they want to with minimum number of steps and time? 

• Comprehensibility: Do users understand the product structure with a minimum amount 
of effort? 



12 

Functionality Tests 

• Security Tests 

– Security tests are designed to verify that the system meets 

the security requirements 

• Confidentiality 

– It is the requirement that data and the processes be protected from 

unauthorized disclosure 

• Integrity 

– It is the requirement that data and process be protected from unauthorized 

modification 

• Availability 

– It is the requirement that data and processes be protected form the denial 

of service to authorized users 

– Security test scenarios should include negative scenarios 

such as misuse and abuse of the software system 

 



13 

Functionality Tests 
• Security Tests (cont’d) : useful types of security tests 

includes the following: 
– Verify that only authorized accesses to the system are 

permitted 

– Verify the correctness of both encryption and decryption 
algorithms for systems where data/messages are encoded. 

– Verify that illegal reading of files, to which the perpetrator is 
not authorized, is not allowed 

– Ensure that virus checkers prevent or curtail entry of viruses 
into the system 

– Ensure that the system is available to authorized users when 
a zero-day attack occurs 

– Try to identify any “backdoors” in the system usually left 
open by the software developers 

 



14 

Functionality Tests 

• Feature Tests 

– These tests are designed to verify any additional 

functionalities which are defined in requirement 

specification but not covered in the functional category 

discussed 

 

– Examples 

• Data conversion testing 

• Cross-functionality testing 

 



15 

Robustness Tests 
    Robustness means how much sensitive a system is to erroneous input and changes its 

operational environment 

 

    Tests in this category are designed to verify how gracefully the system behaves in error 
situations and ina a changed operational environment 

Figure : Types of robustness tests 



16 

Robustness Tests 
• Boundary value 

– Boundary value tests are designed to cover boundary conditions, 
special values, and system defaults 

– The tests include providing invalid input data to the system and 
observing how the system reacts to the invalid input. 

• Power cycling 
– Power cycling tests are executed to ensure that, when there is a 

power glitch in a deployment environment, the system can 
recover from the glitch to be back in normal operation after 
power is restored 

• On-line insertion and removal 
– On-line Insertion and Removal (OIR) tests are designed to ensure 

that on-line insertion and removal of modules, incurred during 
both idle and heavy load operations, are gracefully handled and 
recovered 



17 

Robustness Tests 

• High Availability 
– The concept of high availability is also known as fault tolerance 

– High availability tests are designed to verify the redundancy of 
individual modules, including the software that controls these modules.  

– The goal is to verify that the system gracefully and quickly recovers 
from hardware and software failures without adversely impacting the 
operation of the system 

– High availability is realized by means of proactive methods to 
maximize service up-time, and to minimize the downtime 

• Degraded Node 
– Degraded node (also known as failure containment) tests verify the 

operation of a system after a portion of the system becomes non-
operational 

– It is a useful test for all mission-critical applications. 

 



18 

Interoperability Tests 

• Tests are designed to verify the ability of the system to 
inter-operate with third party products 

 

• The re-configuration activities during interoperability tests 
is known as configuration testing 

 

• Another kind of inter-operability tests is called (backward) 
compatibility tests 
– Compatibility tests verify that the system works the same way 

across different platforms, operating systems, data base 
management systems 

– Backward compatibility tests verify that the current software 
build flawlessly works with older version of platforms 

 



19 

Performance Tests 

• Tests are designed to determine the performance of the actual 
system compared to the expected one 

• Tests are designed to verify response time, execution time, 
throughput, resource utilization and traffic rate 

• One needs to be clear about the specific data to be captured in order 
to evaluate performance metrics.  

• For example, if the objective is to evaluate the response time, then 
one needs to capture  
– End-to-end response time (as seen by external user) 

– CPU time 

– Network connection time 

– Database access time 

– Network connection time 

– Waiting time 

 



20 

Scalability Tests 

• Tests are designed to verify that the system can scale up 
to its engineering limits 

• Scaling tests are conducted to ensure that the system 
response time remains the same, or increases by a small 
amount, as the number of users are increased.  

• There are three major causes of these limitations:  

– data storage limitations 

– network bandwidth limitations 

– speed limit 

• Extrapolation is often used to predict the limit of 
scalability 

 



21 

Stress Tests 
• The goal of stress testing is to evaluate and determine the 

behavior of a software component while the offered load is 
in excess of its designed capacity 

• The system is deliberately stressed by pushing it to and 
beyond its specified limits 

• It ensures that the system can perform acceptably under 
worst-case conditions, under an expected peak load. If the 
limit is exceeded and the system does fail, then the recovery 
mechanism should be invoked 

• Stress tests are targeted to bring out the problems associated 
with one or more of the following: 
– Memory leak 

– Buffer allocation and memory carving 

 



22 

Load and Stability Tests 

• Tests are designed to ensure that the system remains stable 
for a long period of time under full load 

• When a large number of users are introduced and 
applications that run for months without restarting, a 
number of problems are likely to occur:  
– the system slows down 

– the system encounters functionality problems 

– the system crashes altogether 

• Load and stability testing typically involves exercising the 
system with virtual users and measuring the performance to 
verify whether the system can support the anticipated load 

• This kind of testing help one to understand the ways the 
system will fare in real-life situations 

 



23 

Reliability Tests 

• Reliability tests are designed to measure the ability of the 
system to remain operational for long periods of time.  

• The reliability of a system is typically expressed in terms of 
mean time to failure (MTTF) 

• The average of all the time intervals between successive 
failures is called the MTTF 

• After a failure is observed, the developers analyze and fix the 
defects, which consumes some time – let us call this interval 
the repair time.  

• The average of all the repair times is known as the mean time 
to repair (MTTR) 

• Now we can calculate a value called mean time between 
failure (MTBF) as MTBF = MTTF + MTTR 

• The random testing technique  is used for reliability 
measurement 



24 

What is Reliability? 

• Reliability is a broad concept. 
– It is applied whenever we expect something to behave in a certain way. 

• Reliability is one of the metrics that are used to measure quality. 

• It is a user-oriented quality factor relating to system operation. 
– Intuitively, if the users of a system rarely experience failure, the system is 

considered to be more reliable than one that fails more often. 

• A system without faults is considered to be highly reliable. 
– Constructing a correct system is a difficult task. 

– Even an incorrect system may be considered to be reliable if the frequency of 
failure is “acceptable.” 

• Key concepts in discussing reliability: 
– Fault 

– Failure 

– Time 

– Three kinds of time intervals: MTTR, MTTF, MTBF 



25 

What is Reliability? 

• Failure 
– A failure is said to occur if the observable outcome of a 

program execution is different from the expected outcome. 

• Fault 
– The adjudged cause of failure is called a fault. 

– Example: A failure may be cause by a defective block of code. 

• Time 
– Time is a key concept in the formulation of reliability. If the time 

gap between two successive failures is short, we say that the 
system is less reliable. 

– Two forms of time are considered. 
• Execution time () 

• Calendar time (t) 

 



26 

What is Reliability? 
• MTTF: Mean Time To Failure 

• MTTR: Mean Time To Repair 

• MTBF: Mean Time Between Failures (= MTTF + MTTR) 

 

 

 

 

 

 

 

 

 
Figure: Relationship between MTTR, MTTF, and MTBF. 



27 

What is Reliability? 

• Two ways to measure reliability 
– Counting failures in periodic intervals 

• Observer the trend of cumulative failure count -  µ().  

– Failure intensity 
• Observe the trend of number of failures per unit time – λ(). 

• µ() 
– This denotes the total number of failures observed until execution 

time  from the beginning of system execution. 

• λ() 
– This denotes the number of failures observed per unit time after  

time units of executing the system from the beginning. This is also 
called the failure intensity at time . 

• Relationship between λ()  and µ() 
– λ() = dµ()/d 

 



28 

Definitions of Software Reliability 

• First definition 
– Software reliability is defined as the probability of failure-free 

operation of a software system for a specified time in  a specified 
environment. 
• Key elements of the above definition 

– Probability of failure-free operation 

– Length of time of failure-free operation 

– A given execution environment 

• Example 
– The probability that a PC in a store is up and running for eight hours without crash  is 

0.99. 

• Second definition 
– Failure intensity is a measure of the reliability of a software system 

operating in a given environment. 
• Example: An air traffic control system fails once in two years. 

• Comparing the two 
– The first puts emphasis on MTTF, whereas the second on count. 



29 

Factors Influencing Software 

Reliability 
• A user’s perception of  the reliability of a software 

depends upon two categories of information. 
– The number of faults present in the software. 

– The ways users operate the system. 
• This is known as the operational profile. 

• The fault count in a system is influenced by the 
following. 
– Size and complexity of code 

– Characteristics of the development process used 

– Education, experience, and training of development 
personnel 

– Operational environment 

 



30 

Applications of Software Reliability 

• Comparison of software engineering technologies 
– What is the cost of adopting a technology? 

– What is the return from the technology -- in terms of cost and quality? 

• Measuring the progress of system testing 
– Key question: How of testing has been done? 

– The failure intensity measure tells us about the present quality of the 
system: high intensity means more tests are to be performed. 

• Controlling the system in operation 
– The amount of change to a software for maintenance affects its 

reliability. Thus the amount of change to be effected in one go is 
determined by how much reliability we are ready to potentially lose. 

• Better insight into software development processes 
– Quantification of quality gives us a better insight into the development 

processes. 



31 

Operational Profiles 

• Developed at AT&T Bell Labs. 

• An OP describes how actual 
users operate a system. 
– An OP is a quantitative 

characterization of how a system 
will be used. 

• Two ways to represent 
operational profiles 
– Tabular 

– Graphical 

 

 

 

 

 
 

Table : An example of operational profile 
of a library information system. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure: Graphical representation of operational 
profile of a library information system. 

 



32 

Operational Profiles 

• Use of operational profiles 
– For accurate estimation of the reliability of a system, 

test the system in the same way it will be actually used 
in the field. 

• Other uses of operational profiles 
– Use an OP as a guiding document in designing user 

interfaces. 
• The more frequently used operations should be easy to use. 

– Use an OP to design an early version of a software for 
release.  
• This contains the more frequently used operations. 

– Use an OP to determine where to put more resources. 



33 

Regression Tests 

• In this category, new tests are not designed, instead, test cases are 
selected from the existing pool and executed 

• The main idea in regression testing is to verify that no defect has 
been introduced into the unchanged portion of a system due to 
changes made elsewhere in the system 

• During system testing, many defects are revealed and the code is 
modified to fix those defects 

• One of four different scenarios can occur for each fix: 
– The reported defect is fixed 

– The reported defect could not be fixed inspite of making an effort 

– The reported defect has been fixed, but something that used to work 
before has been failing 

– The reported defect could not be fixed inspite of an effort, and 
something that used to work before has been failing 



34 

Regression Tests 

• One possibility is to re-execute every test case from 

version n − 1 to version n before testing anything 

new 

• A full test of a system may be prohibitively 

expensive. 

• A subset of the test cases is carefully selected from 

the existing test suite to  

– maximize the likelihood of uncovering new defects 

– reduce the cost of testing 

 

 



35 

Documentation Tests 

• Documentation testing means verifying the technical accuracy and 
readability of the user manuals, tutorials and the on-line help 

 

• Documentation testing is performed at three levels: 
– Read test: In this test a documentation is reviewed for clarity, organization, 

flow, and accuracy without executing the documented instructions on the 
system 

 

– Hands-on test: Exercise the on-line help and verify the error messages to 
evaluate their accuracy and usefulness. 

 

– Functional test: Follow the instructions embodied in the documentation to 
verify that the system works as it has been documented. 

 



36 

Regulatory Tests 

• In this category, the final system is shipped to the regulatory bodies in those 
countries where the product is expected to be marketed 

 

• The idea is to obtain compliance marks on the product from various countries 

 

• Most of these regulatory bodies issue safety and EMC (electromagnetic 
compatibility)/ EMI (electromagnetic interference) compliance certificates 
(emission and immunity) 

 

• The regulatory agencies are interested in identifying flaws in software that have 
potential safety consequences 

 

• The safety requirements are primarily based on their own published standards 



37 

Software Safety 

• A hazard is a state of a system or a physical situation which 
when combined with certain environmental conditions, 
could lead to an accident or mishap 

 

• An accident or mishap is an unintended event or series of 
events that results in death, injury, illness, damage or loss of 
property, or harm to the environment 

 

• Software safety is defined in terms of hazards  

 

• A software in isolation cannot do physical damage. 
However, a software in the context of a system and an 
embedding environment could be vulnerable 

 



38 

Software Safety 

Examples: 

 

• A software module in a database application is not 
hazardous by itself, but when it is embedded in a 
missile navigation system, it could be hazardous 

 

• If a missile takes a U-turn because of a software 
error in the navigation system, and destroys the 
submarine that launched it, then it is not a safe 
software 



39 

Safety Assurance 
• There are two basic tasks performed by a safety 

assurance engineering team: 

 

– Provide methods for identifying, tracking, evaluating, 
and eliminating hazards associated with a system 

 

– Ensure that safety is embedded into the design and 
implementation in a timely and cost effective manner, 
such that the risk created by the user/operator error is 
minimized 



Test Team Organization 

• Test Groups 

• Integration Test Group 

• System Test Group 

• Software Quality Assurance Group 

• Quality Management Group 

• System Test Team Hierarchy  

• Effective Staffing of Test Engineers 

• Recruiting Test Engineers 

• Retaining Test Engineers 

• Team Building 

 



41 

Test Groups 
• There is no right or wrong ways to organize test teams 

• The structure one chooses will affect productivity, quality, 
customer satisfaction, employee morale, and budget 

 

• Unit tests are developed and executed by the software developers 
themselves, rather than an independent unit test group 

 

• It is recommended to have at least two test groups:  
– integration test group 

– system test group 

• The acceptance test group is formed on a demand basis consisting 
of people from different backgrounds 

• The acceptance test group is dismantled after the project is 
completed 



42 

Integration Test Group 
• The mandate of this group is to ensure that unit-tested 

modules operate correctly when they are combined 

• The leader of the integration test group reports to the 
software development manager 

• The software developers, who together built the modules, 
must be involved in performing integration testing 

• In practice, the developers themselves may integrate the 
system 

• The system architects are also involved in integration testing 
for complex systems 

• The test group may perform other duties, such as: 
– code inspection, configuration management, release management, 

and management of development laboratory. 

 

 



43 

System Test Group 
• The mandate of this group is to ensure that the system requirements have been satisfied 

and that the system is acceptable 

• The system test group is truly an independent group, and they usually have a separate 
headcount and budget 

• The manager of this group is a peer to the hardware or software development managers 

• The system test group conducts different categories of tests. 

• The group executes business acceptance tests identified in the user acceptance test plan 

Figure : Structure of test groups 



44 

Software Quality Assurance Group 

• Software quality assurance deals not only with the location of the defects, but also with 
mechanisms to prevent defects 

• Software quality assurance group has a larger role in ensuring, conformance to the best 
development practices throughout the organization 

• It is recommended to have a separate group for quality management work as shown in 
Figure, rather than assign quality management task to system test engineers. 

 

 

Figure: Structure of software quality assurance group. 



45 

Quality Management Group 

• This group works on customizing software development processes 
and ensuring that processes are adhered to 

• The group is responsible for creating and implementing a quality 
management program plan for the entire organization 

• The group proactively works to drive process improvement 
initiatives across the organization 

• Quality control is another term that is often used in the literature.  

• Quality control is defined in the IEEE standard 610 as:  
A set of activities designed to evaluate the quality of developed or 

manufactured products 

• The term is used in a production or hardware manufacturing 
environment, where large a number of physical items are produced 

 



46 

System Test Team Hierarchy 

Figure: System test team hierarchy. 



47 

Effective Staffing of Test Engineers 

• A successful test team is made up of members whose 
strengths are complementary 

• It is advisable to have people on the test team with 
diverse background and experience, such as: 
–  developers 

– integration testers 

– information technology administrators 

– technical support personnel 

– technical writers 

– quality management personnel 

– experienced test engineers 

– recent graduates 

 

 



48 

Effective Staffing of Test Engineers 

• It is useful to keep in mind the following five-C characteristics a 
good test engineer must possess. 
– Controlled Comprehensive, Considerate, Critical and Competent 

• In addition to the five-C characteristics, test engineers are 
expected to have the following skills 
– Have credibility with software developers 

– Understand developers’ terminologies 

– Know when the code is ready for testing 

– Be able to evaluate the impact of a problem on the customers 

– Assist software developers in expediting defect resolution 

– Reduce false-positive and false-negative results in testing 

– Develop expertise in test automation 

– Mentor the junior test engineers 

 



49 

Retaining Test Engineers 

• The following are key factors that positively 
impact the ability of an organization to retain 
good system test engineers 

 
– A Career Path 

– Training 
• On-site commercial training: 

• Public forum training 

• In-house training 

• Specialty training 

• Mentoring 

– Reward System 

 



50 

Team Building 

• The essential ingredients of a good team 

building: 

– Expectations 

– Consistency 

– Information Sharing 

– Standardization 

– Test Environments 

– Recognitions 

 

 


