Software Testing and Quality
Assurance
Theory and Practice
System Test Categories & Test Team
Organization

Dr. Mohammad Ahmad

Outline

Taxonomy of System Tests
Basic Tests
Functionality Tests
Robustness Tests
Interoperability Tests
Performance Tests
Scalability Tests

Stress Tests

LLoad and Stability Tests
Regression Tests
Documentation Tests

Regulatory Tests
— Software Safety
— Safety Assurance

Taxonomy of System Tests

Basic

Functionality

Robustness
Inter-operability
Ferformance
Types of System lability
Tests
Stress

Load and Stability

Reliability

Regression

Documentation

Regulatory

Figure : Types of system tests

Taxonomy of System Tests

Basic tests provide an evidence that the system can be installed,
configured and be brought to an operational state

Functionality tests provide comprehensive testing over the full
range of the requirements, within the capabilities of the system

Robustness tests determine how well the system recovers from
various input errors and other failure situations

Inter-operability tests determine whether the system can inter-
operate with other third party products

Performance tests measure the performance characteristics of
the system, e.g., throughput and response time, under various
conditions

Taxonomy of System Tests

Scalability tests determine the scaling limits of the system, in
terms of user scaling, geographic scaling, and resource scaling

Stress tests put a system under stress in order to determine the
limitations of a system and, when it fails, to determine the manner
In which the failure occurs

Load and Stability tests provide evidence that the system
remains stable for a long period of time under full load

Reliability tests measure the ability of the system to keep
operating for a long time without developing failures

Regression tests determine that the system remains stable as it
cycles through the integration of other subsystems and through
maintenance tasks

Documentation tests ensure that the system’s user guides are
accurate and usable

Boot

Upgrade/Downgrade

Types of Basic Tests Light Emitting Diode

Diagnostic

Command Line Interface

Figure : Types of basic tests

Boot: Boot tests are designed to verify that the system can boot up its software
Image (or, build) from the supported boot options

Upgrade/Downgrade: Upgrade/downgrade tests are designed to verify that the
system software can be upgraded or downgraded (rollback) in a graceful manner

Basic Tests

Light Emitting Diode: The LED (Light Emitting Diode) tests are
designed to verify that the system LED status indicators functioning
as desired

Diagnostic: Diagnostic tests are designed to verify that the
hardware components (or, modules) of the system are functioning as
desired

— Power-On Self Test
— Ethernet Loop Back Test
— Bit Error Test

Command line Interface: Command Line Interface (CLI) tests are
designed to verify that the system can be configured

Figure : Types of functionality tests

Functionality Tests

e Communication Systems Tests
— These tests are designed to verify the implementation of the communication
systems as specified in the customer requirements specification

— Four types of communication systems tests are recommended

» Basis interconnection tests
» Capability tests

* Behavior tests

» System resolution tests

* Module Tests
— Module Tests are designed to verify that all the modules function individually

as desired within the systems
— The idea here is to ensure that individual modules function correctly within the

whole system.
For example, an Internet router contains modules such as line cards, system controller,

power supply, and fan tray. Tests are designed to verify each of the functionalities

Functionality Tests

* Logging and Tracing Tests

— Logging and Tracing Tests are designed to verify the
configurations and operations of logging and tracing

— This also includes verification of “flight data recorder: non-
volatile Flash memory” logs when the system crashes

« Element Management Systems (EMS) Tests

— EMS tests verifies the main functionalities, which are to
manage, monitor and upgrade the communication systems
network elements

« Management Information Base (MIB) Tests

— MIB tests are designed to verify
 Enterprise MIBs specific to the system

Functionality Tests

« Graphical User Interface Tests

Tests are designed to look-and-feel the interface to the users of an application
system

Tests are designed to verify different components such as icons, menu bars,
dialog boxes, scroll bars, list boxes, and radio buttons

The GUI can be utilized to test the functionality behind the interface, such as
accurate response to database queries

Tests the usefulness of the on-line help, error messages, tutorials, and user
manuals

The usability characteristics of the GUI is tested, which includes the following

» Accessibility: Can users enter, navigate, and exit with relative ease?

» Responsiveness. Can users do what they want and when they want in a way that is
clear?

» Efficiency: Can users do what they want to with minimum number of steps and time?

» Comprehensibility: Do users understand the product structure with a minimum amount
of effort?

Functionality Tests

 Security Tests

— Security tests are designed to verify that the system meets
the security requirements

 Confidentiality

— It is the requirement that data and the processes be protected from
unauthorized disclosure

* Integrity

— It is the requirement that data and process be protected from unauthorized
modification

 Avalilability

— It is the requirement that data and processes be protected form the denial
of service to authorized users

— Security test scenarios should include negative scenarios
such as misuse and abuse of the software system

Functionality Tests

Security Tests (cont’d) : useful types of security tests
Includes the following:

— Verify that only authorized accesses to the system are
permitted

— Verify the correctness of both encryption and decryption
algorithms for systems where data/messages are encoded.

— Verify that illegal reading of files, to which the perpetrator is
not authorized, is not allowed

— Ensure that virus checkers prevent or curtail entry of viruses
Into the system

— Ensure that the system is available to authorized users when
a zero-day attack occurs

— Try to 1dentify any “backdoors” in the system usually left
open by the software developers

Functionality Tests

e Feature Tests

— These tests are designed to verify any additional
functionalities which are defined in requirement
specification but not covered in the functional category
discussed

— Examples
 Data conversion testing
 Cross-functionality testing

Robustness Tests

Robustness means how much sensitive a system is to erroneous input and changes its
operational environment

Tests in this category are designed to verify how gracefully the system behaves in error
situations and ina a changed operational environment

Boundary Value

Power Cycling

Types of On-line Insertion and
Robustness Tests Removal
High Availability

Degraded Node

Figure : Types of robustness tests

15

Robustness Tests

« Boundary value

— Boundary value tests are designed to cover boundary conditions,
special values, and system defaults

— The tests include providing invalid input data to the system and
observing how the system reacts to the invalid input.

« Power cycling

— Power cycling tests are executed to ensure that, when there is a
power glitch in a deployment environment, the system can
recover from the glitch to be back in normal operation after
power Is restored

 On-line insertion and removal

— On-line Insertion and Removal (OIR) tests are designed to ensure
that on-line insertion and removal of modules, incurred during
both idle and heavy load operations, are gracefully handled and
recovered

Robustness Tests

High Availability

The concept of high availability is also known as fault tolerance

High availability tests are designed to verify the redundancy of
individual modules, including the software that controls these modules.

The goal is to verify that the system gracefully and quickly recovers
from hardware and software failures without adversely impacting the
operation of the system

High availability is realized by means of proactive methods to
maximize service up-time, and to minimize the downtime

Degraded Node

Degraded node (also known as failure containment) tests verify the
operation of a system after a portion of the system becomes non-
operational

— It is a useful test for all mission-critical applications.

Interoperability Tests

 Tests are designed to verify the ability of the system to
Inter-operate with third party products

* The re-configuration activities during interoperability tests
IS known as configuration testing

* Another kind of inter-operability tests Is called (backward)
compatibility tests
— Compatibility tests verify that the system works the same way

across different platforms, operating systems, data base
management systems

— Backward compatibility tests verify that the current software
build flawlessly works with older version of platforms

Performance Tests

Tests are designed to determine the performance of the actual
system compared to the expected one

Tests are designed to verify response time, execution time,
throughput, resource utilization and traffic rate

One needs to be clear about the specific data to be captured in order
to evaluate performance metrics.

For example, if the objective is to evaluate the response time, then
one needs to capture

— End-to-end response time (as seen by external user)

— CPU time

— Network connection time

— Database access time

— Network connection time

— Waiting time

Scalability Tests

Tests are designed to verify that the system can scale up
to Its engineering limits

Scaling tests are conducted to ensure that the system
response time remains the same, or increases by a small
amount, as the number of users are increased.

There are three major causes of these limitations:

— data storage limitations

— network bandwidth limitations

— speed limit

Extrapolation is often used to predict the limit of
scalability

Stress Tests

* The goal of stress testing Is to evaluate and determine the

behavior of a software component while the offered load is
In excess of Its designed capacity

* The system Iis deliberately stressed by pushing it to and
peyond its specified limits

t ensures that the system can perform acceptably under
worst-case conditions, under an expected peak load. If the

Imit IS exceeded and the system does fail, then the recovery
mechanism should be invoked

* Stress tests are targeted to bring out the problems associated
with one or more of the following:

— Memory leak
— Buffer allocation and memory carving

Load and Stability Tests

Tests are designed to ensure that the system remains stable
for a long period of time under full load

When a large number of users are Introduced and
applications that run for months without restarting, a
number of problems are likely to occur:

— the system slows down
— the system encounters functionality problems
— the system crashes altogether
Load and stability testing typically involves exercising the

system with virtual users and measuring the performance to
verify whether the system can support the anticipated load

This kind of testing help one to understand the ways the
system will fare in real-life situations

Reliability Tests

Reliability tests are designed to measure the ability of the
system to remain operational for long periods of time.

The reliability of a system is typically expressed in terms of
mean time to failure (MTTF)

The average of all the time intervals between successive
failures is called the MTTF

After a failure Is observed, the developers analyze and fix the
defects, which consumes some time — let us call this interval
the repair time.

The average of all the repair times is known as the mean time
to repair (MTTR)

Now we can calculate a value called mean time between
failure (MTBF) as MTBF = MTTF + MTTR

The random testing technique 1is used for reliability
measurement

What Is Reliability?

Reliability is a broad concept.
— It is applied whenever we expect something to behave in a certain way.

Reliability is one of the metrics that are used to measure quality.

It is a user-oriented quality factor relating to system operation.

— Intuitively, if the users of a system rarely experience failure, the system is
considered to be more reliable than one that fails more often.

A system without faults is considered to be highly reliable.
— Constructing a correct system is a difficult task.

— Even an incorrect system may be considered to be reliable if the frequency of
failure 1s “acceptable.”

Key concepts in discussing reliability:

— Fault

— Failure

— Time

— Three kinds of time intervals: MTTR, MTTF, MTBF

What Is Reliability?

 Failure

— Afailure is said to occur if the observable outcome of a
program execution is different from the expected outcome.

« Fault
— The adjudged cause of failure is called a fault.
— Example: A failure may be cause by a defective block of code.
* Time
— Time is a key concept in the formulation of reliability. If the time

gap between two successive failures is short, we say that the
system is less reliable.

— Two forms of time are considered.
» Execution time (7)
» Calendar time (9

What iIs Reliability?

« MTTF: Mean Time To Failure
« MTTR: Mean Time To Repair
« MTBF: Mean Time Between Failures (= MTTF + MTTR)

Occurrences of failures Repairs performed

Start of M
system operation

BRI IERI

MTTR = mean of these time intervals
MTTF = mean of these time intervals

MTRF = mean of these time interval}

Figure: Relationship between MTTR, MTTF, and MTBF.

What Is Reliability?

Two ways to measure reliability
— Counting failures in periodic intervals
» Observer the trend of cumulative failure count - p(z).

— Failure intensity
» Observe the trend of number of failures per unit time — A(t).

()
— This denotes the total number of failures observed until execution
time T from the beginning of system execution.

Mr)
— This denotes the number of failures observed per unit time after t

time units of executing the system from the beginning. This is also
called the failure intensity at time .

Relationship between A(t) and pu(7)
— M) =du(t)/dt

Definitions of Software Reliability

 First definition
— Software reliability is defined as the probability of failure-free
operation of a software system for a specified time in a specified
environment.

» Key elements of the above definition
— Probability of failure-free operation
— Length of time of failure-free operation
— A given execution environment

« Example
— The probability that a PC in a store is up and running for eight hours without crash is
0.99.

« Second definition
— Failure intensity is a measure of the reliability of a software system
operating in a given environment.
« Example: An air traffic control system fails once in two years.
« Comparing the two
— The first puts emphasis on MTTF, whereas the second on count.

Factors Influencing Software
Reliability

* Auser’s perception of the reliability of a software
depends upon two categories of information.

— The number of faults present in the software.

— The ways users operate the system.
 This is known as the operational profile.

« The fault count in a system is influenced by the
following.

— Size and complexity of code
— Characteristics of the development process used

— Education, experience, and training of development
personnel

— Operational environment

Applications of Software Reliability

Comparison of software engineering technologies

— What is the cost of adopting a technology?

— What is the return from the technology -- in terms of cost and quality?
Measuring the progress of system testing

— Key question: How of testing has been done?

— The failure intensity measure tells us about the present quality of the
system: high intensity means more tests are to be performed.

Controlling the system in operation

— The amount of change to a software for maintenance affects its
reliability. Thus the amount of change to be effected in one go is
determined by how much reliability we are ready to potentially lose.

Better insight into software development processes

— Quantification of quality gives us a better insight into the development
Processes.

Operational Profiles

« Developed at AT&T Bell Labs.

 An OP describes how actual
users operate a system.
— An OP is a quantitative

characterization of how a system
will be used.

« Two ways to represent
operational profiles

— Tabular

— Graphical
Operation Operations | Probability

per hour

Book checked out 450 0.45
Book returned in time 324 0.324
Book renewed 81 0.081
Book returned late 36 0.036
Book reported lost 9 0.009
Total 1000 1.0

Table : An example of operational profile

of a library information system.

31

Account
management = (.4

Administration = 0.1
Reporting = 0.6

Check out = 0.5

ooooo

Renewal = 0.09

User service = 0.9
Loss=0.01

Return = 0.4
Delayed = 0.1

Tn-time =0.9

Figure: Graphical representation of operational
profile of a library information system.

Operational Profiles

» Use of operational profiles

— For accurate estimation of the reliability of a system,
test the system in the same way it will be actually used
In the field.

 Other uses of operational profiles

— Use an OP as a guiding document in designing user
Interfaces.

« The more frequently used operations should be easy to use.

— Use an OP to design an early version of a software for
release.

 This contains the more frequently used operations.
— Use an OP to determine where to put more resources.

Regression Tests

In this category, new tests are not designed, instead, test cases are
selected from the existing pool and executed

The main idea in regression testing is to verify that no defect has
been introduced into the unchanged portion of a system due to
changes made elsewhere in the system

During system testing, many defects are revealed and the code is
modified to fix those defects
One of four different scenarios can occur for each fix:

— The reported defect is fixed

— The reported defect could not be fixed inspite of making an effort

— The reported defect has been fixed, but something that used to work
before has been failing

— The reported defect could not be fixed inspite of an effort, and
something that used to work before has been failing

Regression Tests

* One possibility Is to re-execute every test case from
version n — 1 to version n before testing anything
new

A full test of a system may be prohibitively
expensive.

» Asubset of the test cases Is carefully selected from
the existing test suite to
— maximize the likelihood of uncovering new defects
— reduce the cost of testing

Documentation Tests

 Documentation testing means verifying the technical accuracy and
readability of the user manuals, tutorials and the on-line help

« Documentation testing is performed at three levels:

— Read test: In this test a documentation is reviewed for clarity, organization,
flow, and accuracy without executing the documented instructions on the
system

— Hands-on test: Exercise the on-line help and verify the error messages to
evaluate their accuracy and usefulness.

— Functional test. Follow the instructions embodied in the documentation to
verify that the system works as it has been documented.

Regulatory Tests

In this category, the final system is shipped to the regulatory bodies in those
countries where the product is expected to be marketed

The idea is to obtain compliance marks on the product from various countries

Most of these regulatory bodies issue safety and EMC (electromagnetic
compatibility)/ EMI (electromagnetic interference) compliance certificates
(emission and immunity)

The regulatory agencies are interested in identifying flaws in software that have
potential safety consequences

The safety requirements are primarily based on their own published standards

Software Safety

A hazardis a state of a system or a physical situation which
when combined with certain environmental conditions,
could lead to an acciadent or mishap

An accident or mishap is an unintended event or series of
events that results in death, Injury, illness, damage or loss of
property, or harm to the environment

Software safety is defined in terms of hazards

A software In isolation cannot do physical damage.
However, a software in the context of a system and an
embedding environment could be vulnerable

Software Safety

Examples:

A software module in a database application is not
hazardous by itself, but when it is embedded in a
missile navigation system, it could be hazardous

* |f a missile takes a U-turn because of a software
error in the navigation system, and destroys the
submarine that launched it, then it 1s not a safe
software

Safety Assurance

* There are two basic tasks performed by a safety
assurance engineering team:

— Provide methods for identifying, tracking, evaluating,
and eliminating hazards associated with a system

— Ensure that safety is embedded into the design and
Implementation in a timely and cost effective manner,
such that the risk created by the user/operator error is
minimized

Test Team Organization

Test Groups

Integration Test Group

System Test Group

Software Quality Assurance Group
Quality Management Group
System Test Team Hierarchy
Effective Staffing of Test Engineers
Recruiting Test Engineers
Retaining Test Engineers

Team Building

Test Groups

There Is no right or wrong ways to organize test teams

The structure one chooses will affect productivity, quality,
customer satisfaction, employee morale, and budget

Unit tests are developed and executed by the software developers
themselves, rather than an independent unit test group

It iIs recommended to have at least two test groups:
— Integration test group
— system test group

The acceptance test group Is formed on a demand basis consisting
of people from different backgrounds

The acceptance test group is dismantled after the project is
completed

Integration Test Group

The mandate of this group Is to ensure that unit-tested
modules operate correctly when they are combined

The leader of the integration test group reports to the
software development manager

The software developers, who together built the modules,
must be involved in performing integration testing

In practice, the developers themselves may integrate the
system

The system architects are also involved in integration testing
for complex systems

The test group may perform other duties, such as:

— code inspection, configuration management, release management,
and management of development laboratory.

System Test Group

The mandate of this group is to ensure that the system requirements have been satisfied
and that the system is acceptable

The system test group is truly an independent group, and they usually have a separate
headcount and budget

The manager of this group is a peer to the hardware or software development managers
The system test group conducts different categories of tests.
The group executes business acceptance tests identified in the user acceptance test plan

Executive

43

Management
Software System Test Hardware
Group Group Group
I
|]
Integration Software
Test Group Developers
Development Performance Scalability Automation Sustaining
Test Group Test Group Test Group Test Group Test Group

Figure : Structure of test groups

Software Quality Assurance Group

Software quality assurance deals not only with the /ocation of the defects, but also with
mechanisms to prevent defects

Software quality assurance group has a larger role in ensuring, conformance to the best
development practices throughout the organization

It is recommended to have a separate group for quality management work as shown in
Figure, rather than assign quality management task to system test engineers.

Quality Assurance
Group

Quality

System Test Group Management Group

Figure: Structure of software quality assurance group.

44

Quality Management Group

This group works on customizing software development processes
and ensuring that processes are adhered to

The group is responsible for creating and implementing a quality
management program plan for the entire organization

The group proactively works to drive process improvement
initiatives across the organization

Quality control is another term that is often used in the literature.

Quality control is defined in the IEEE standard 610 as:

A set of activities designed to evaluate the quality of developed or
manufactured products

The term is used In a production or hardware manufacturing
environment, where large a number of physical items are produced

46

System Test Team Hierarchy

Test
manager

Technical leader 1
Technical leader 2,

Principal engineer 1
Principal engineer 2, ...

/ Senior engineer 1 \
Senior engineer 2, ...
Junior engineer 1
Junior engineer 2,

Figure: System test team hierarchy.

Effective Staffing of Test Engineers

« A successful test team I1s made up of members whose
strengths are complementary

* Itis advisable to have people on the test team with
diverse background and experience, such as:
— developers
— Integration testers
— Information technology administrators
— technical support personnel
— technical writers
— guality management personnel
— experienced test engineers
— recent graduates

Effective Staffing of Test Engineers

* It is useful to keep in mind the following #/ve-C characteristics a
good test engineer must possess.

— Controlled Comprehensive, Considerate, Critical and Competent
 In addition to the 7/ve-C characteristics, test engineers are

expected to have the following skills

— Have credibility with software developers

— Understand developers’ terminologies

— Know when the code is ready for testing

— Be able to evaluate the impact of a problem on the customers

— Assist software developers in expediting defect resolution

— Reduce false-positive and false-negative results in testing

— Develop expertise In test automation

— Mentor the junior test engineers

Retaining Test Engineers

* The following are key factors that positively
Impact the ability of an organization to retain
good system test engineers

— A Career Path

— Training
 On-site commercial training:
 Public forum training
* In-house training
 Specialty training
« Mentoring

— Reward System

Team Building

* The essential ingredients of a good team
building:
— EXxpectations
— Consistency
— Information Sharing
— Standardization
— Test Environments
— Recognitions

